Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
mBio ; 12(5): e0234521, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34607457

RESUMO

During fermentation, Saccharomyces cerevisiae metabolizes sugars and other nutrients to obtain energy for growth and survival, while also modulating these activities in response to cell-environment interactions. Here, differences in S. cerevisiae gene expression were explored over a time course of fermentation and used to differentiate fermentations, using Pinot noir grapes from 15 unique sites. Data analysis was complicated by the fact that the fermentations proceeded at different rates, making a direct comparison of time series gene expression data difficult with conventional differential expression tools. This led to the development of a novel approach combining diffusion mapping with continuous differential expression analysis (termed DMap-DE). Using this method, site-specific deviations in gene expression were identified, including changes in gene expression correlated with the non-Saccharomyces yeast Hanseniaspora uvarum, as well as initial nitrogen concentrations in grape musts. These results highlight novel relationships between site-specific variables and Saccharomyces cerevisiae gene expression that are linked to repeated fermentation outcomes. It was also demonstrated that DMap-DE can extract biologically relevant gene expression patterns from other contexts (e.g., hypoxic response of Saccharomyces cerevisiae) and offers advantages over other data dimensionality reduction approaches, indicating that DMap-DE offers a robust method for investigating asynchronous time series gene expression data. IMPORTANCE In this work, Saccharomyces cerevisiae gene expression was used as a biosensor to capture differences across and between fermentations of Pinot noir grapes from 15 unique sites representing eight American Viticultural Areas. This required development of a novel analysis method, DMap-DE, for investigation of asynchronous gene expression data. It was demonstrated that DMap-DE reveals biologically relevant shifts in gene expression related to cell-environment interactions in the context of hypoxia and fermentation. Using these data, it was discovered that gene expression by non-Saccharomyces yeasts and initial nitrogen content in grape musts are correlated with differences in gene expression among fermentations. These findings highlight important relationships between site-specific variables and gene expression that may be used to understand why foods and beverages, including wine, possess sensory characteristics associated with or derived from their place of origin.


Assuntos
Biologia Computacional/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fermentação , Regulação Fúngica da Expressão Gênica , Hanseniaspora/genética , Hanseniaspora/crescimento & desenvolvimento , Hanseniaspora/metabolismo , RNA-Seq , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vitis/microbiologia
2.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669299

RESUMO

Apiculate yeasts belonging to the genus Hanseniaspora are commonly isolated from viticultural settings and often dominate the initial stages of grape must fermentations. Although considered spoilage yeasts, they are now increasingly becoming the focus of research, with several whole-genome sequencing studies published in recent years. However, tools for their molecular genetic manipulation are still lacking. Here, we report the development of a tool for the genetic modification of Hanseniaspora uvarum. This was employed for the disruption of the HuATF1 gene, which encodes a putative alcohol acetyltransferase involved in acetate ester formation. We generated a synthetic marker gene consisting of the HuTEF1 promoter controlling a hygromycin resistance open reading frame (ORF). This new marker gene was used in disruption cassettes containing long-flanking (1000 bp) homology regions to the target locus. By increasing the antibiotic concentration, transformants were obtained in which both alleles of the putative HuATF1 gene were deleted in a diploid H. uvarum strain. Phenotypic characterisation including fermentation in Müller-Thurgau must showed that the null mutant produced significantly less acetate ester, particularly ethyl acetate. This study marks the first steps in the development of gene modification tools and paves the road for functional gene analyses of this yeast.


Assuntos
Deleção de Genes , Engenharia Genética/métodos , Hanseniaspora/enzimologia , Hanseniaspora/genética , Microrganismos Geneticamente Modificados/genética , Proteínas/genética , Acetatos/metabolismo , Alelos , Fermentação/genética , Genes Fúngicos , Fases de Leitura Aberta , Fenótipo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vitis/metabolismo , Vinho
3.
ACS Synth Biol ; 10(2): 297-308, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33501828

RESUMO

The marine yeast Debaryomyces hansenii is of high importance in the food, chemical, and medical industries. D. hansenii is also a popular model for studying molecular mechanisms of halo- and osmotolerance. The absence of genome editing technologies hampers D. hansenii research and limits its biotechnological application. We developed novel and efficient single- and dual-guide CRISPR systems for markerless genome editing of D. hansenii. The single-guide system allows high-efficiency (up to 95%) mutation of genes or regulatory elements. The dual-guide system is applicable for efficient deletion of genomic loci. We used these tools to study transcriptional regulation of the 26S proteasome, an ATP-dependent protease complex whose proper function is vital for all cells and organisms. We developed a genetic approach to control the activity of the 26S proteasome by deregulation of its essential subunits. The mutant strains were sensitive to geno- and proteotoxic stresses as well as high salinity and osmolarity, suggesting a contribution of the proteasome to the extremophilic properties of D. hansenii. The developed CRISPR systems allow efficient D. hansenii genome engineering, providing a genetic way to control proteasome activity, and should advance applications of this yeast.


Assuntos
Sistemas CRISPR-Cas , Debaryomyces/enzimologia , Debaryomyces/genética , Edição de Genes/métodos , Complexo de Endopeptidases do Proteassoma/genética , Saccharomyces cerevisiae/genética , Proteína 9 Associada à CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Extremófilos/enzimologia , Extremófilos/genética , Regulação da Expressão Gênica , Genoma Fúngico , Organismos Geneticamente Modificados , Osmorregulação/genética , Estresse Oxidativo/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Salino/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
Yeast ; 37(9-10): 427-435, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32638443

RESUMO

Benzenoids are compounds associated with floral and fruity flavours in flowers, fruits and leaves and present a role in hormonal signalling in plants. These molecules are produced by the phenyl ammonia lyase pathway. However, some yeasts can also synthesize them from aromatic amino acids using an alternative pathway that remains unknown. Hanseniaspora vineae can produce benzenoids at levels up to two orders of magnitude higher than Saccharomyces species, so it is a model microorganism for studying benzenoid biosynthesis pathways in yeast. According to their genomes, several enzymes have been proposed to be involved in a mandelate pathway similar to that described for some prokaryotic cells. Among them, the ARO10 gene product could present benzoylformate decarboxylase activity. This enzyme catalyses the decarboxylation of benzoylformate into benzaldehyde at the end of the mandelate pathway in benzyl alcohol formation. Two homologous genes of ARO10 were found in the two sequenced H. vineae strains. In this study, nine other H. vineae strains were analysed to detect the presence and per cent homology of ARO10 sequences by PCR using specific primers designed for this species. Also, the copy number of the genes was estimated by quantitative PCR. To verify the relation of ARO10 with the production of benzyl alcohol during fermentation, a deletion mutant in the ARO10 gene of Saccharomyces cerevisiae was used. The two HvARO10 paralogues were analysed and compared with other α-ketoacid decarboxylases at the sequence and structural level.


Assuntos
Derivados de Benzeno/metabolismo , Vias Biossintéticas/genética , Hanseniaspora/genética , Piruvato Descarboxilase/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcriptoma , Benzaldeídos/metabolismo , Álcool Benzílico/metabolismo , Fermentação , Hanseniaspora/metabolismo
5.
Curr Genet ; 66(6): 1135-1153, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32719935

RESUMO

Halotolerant species are adapted to dealing continually with hyperosmotic environments, having evolved strategies that are uncommon in other organisms. The HOG pathway is the master system that regulates the cellular adaptation under these conditions; nevertheless, apart from the importance of Debaryomyces hansenii as an organism representative of the halotolerant class, its HOG1 pathway has been poorly studied, due to the difficulty of applying conventional recombinant DNA technology. Here we describe for the first time the phenotypic characterisation of a null HOG1 mutant of D. hansenii. Dhhog1Δ strain was found moderately resistant to 1 M NaCl and sensitive to higher concentrations. Under hyperosmotic shock, DhHog1 fully upregulated transcription of DhSTL1 and partially upregulated that of DhGPD1. High osmotic stress lead to long-term inner glycerol accumulation that was partially dependent on DhHog1. These observations indicated that the HOG pathway is required for survival under high external osmolarity but dispensable under low and mid-osmotic conditions. It was also found that DhHog1 can regulate response to alkali stress during hyperosmotic conditions and that it plays a role in oxidative and endoplasmic reticulum stress. Taken together, these results provide new insight into the contribution of this MAPK in halotolerance of this yeast.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana Transportadoras/genética , Osmorregulação/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Álcalis/efeitos adversos , Regulação Fúngica da Expressão Gênica , Glicerol/metabolismo , Pressão Osmótica/fisiologia , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Saccharomycetales/fisiologia , Transdução de Sinais/genética
6.
J Bacteriol ; 201(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31036728

RESUMO

We characterized an operon in Mycobacterium tuberculosis, Rv3679-Rv3680, in which each open reading frame is annotated to encode "anion transporter ATPase" homologues. Using structure prediction modeling, we found that Rv3679 and Rv3680 more closely resemble the guided entry of tail-anchored proteins 3 (Get3) chaperone in eukaryotes. Get3 delivers proteins into the membranes of the endoplasmic reticulum and is essential for the normal growth and physiology of some eukaryotes. We sought to characterize the structures of Rv3679 and Rv3680 and test if they have a role in M. tuberculosis pathogenesis. We solved crystal structures of the nucleotide-bound Rv3679-Rv3680 complex at 2.5 to 3.2 Å and show that while it has some similarities to Get3 and ArsA, there are notable differences, including that these proteins are unlikely to be involved in anion transport. Deletion of both genes did not reveal any conspicuous growth defects in vitro or in mice. Collectively, we identified a new class of proteins in bacteria with similarity to Get3 complexes, the functions of which remain to be determined.IMPORTANCE Numerous bacterial species encode proteins predicted to have similarity with Get3- and ArsA-type anion transporters. Our studies provide evidence that these proteins, which we named BagA and BagB, are unlikely to be involved in anion transport. In addition, BagA and BagB are conserved in all mycobacterial species, including the causative agent of leprosy, which has a highly decayed genome. This conservation suggests that BagAB constitutes a part of the core mycobacterial genome and is needed for some yet-to-be-determined part of the life cycle of these organisms.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Animais , Proteínas de Transporte de Ânions/genética , Feminino , Genoma Bacteriano , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Óperon , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
J Biol Chem ; 289(29): 20245-58, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24895133

RESUMO

Nik1 orthologs are sensor kinases that function upstream of the high osmolarity glycerol/p38 MAPK pathway in fungi. They contain a poly-HAMP module at their N terminus, which plays a pivotal role in osmosensing as well as fungal death upon exposure to fludioxonil. DhNik1p is a typical member of this class that contains five HAMP domains and four HAMP-like linkers. We investigated the contribution of each of the HAMP-like linker regions to the functionality of DhNik1p and found that the HAMP4b linker was essential as its deletion resulted in the complete loss of activity. Replacement of this linker with flexible peptide sequences did not restore DhNik1p activity. Thus, the HAMP-like sequence and possibly structural features of this linker region are indispensable for the kinase activity of DhNik1p. To gain insight into the global shape of the poly-HAMP module in DhNik1p (HAMP1­5), multi-angle laser light and small angle x-ray scattering studies were carried out. Those data demonstrate that the maltose-binding protein-tagged HAMP1­5 protein exist as a dimer in solution with an elongated shape of maximum linear dimension ∼365 Å. Placement of a sequence similarity based model of the HAMP1­5 protein inside experimental data-based models showed how two chains of HAMP1­5 are entwined on each other and the overall structure retained a periodicity. Normal mode analysis of the structural model is consistent with the H4b linker being a key to native-like collective motion in the protein. Overall, our shape-function studies reveal how different elements in the HAMP1­5 structure mediate its function.


Assuntos
Debaryomyces/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Debaryomyces/efeitos dos fármacos , Debaryomyces/genética , Dioxóis/farmacologia , Proteínas Fúngicas/genética , Fungicidas Industriais/farmacologia , Genes Fúngicos , Histidina Quinase , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Quinases/genética , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Pirróis/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Homologia Estrutural de Proteína
8.
J Biol Chem ; 287(10): 7301-12, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22232558

RESUMO

PPZ1 orthologs, novel members of a phosphoprotein phosphatase family of phosphatases, are found only in fungi. They regulate diverse physiological processes in fungi e.g. ion homeostasis, cell size, cell integrity, etc. Although they are an important determinant of salt tolerance in fungi, their physiological role remained unexplored in any halotolerant species. In this context we report here molecular and functional characterization of DhPPZ1 from Debaryomyces hansenii, which is one of the most halotolerant and osmotolerant species of yeast. Our results showed that DhPPZ1 knock-out strain displayed higher tolerance to toxic cations, and unlike in Saccharomyces cerevisiae, Na(+)/H(+) antiporter appeared to have an important role in this process. Besides salt tolerance, DhPPZ1 also had role in cell wall integrity and growth in D. hansenii. We have also identified a short, serine-arginine-rich sequence motif in DhPpz1p that is essential for its role in salt tolerance but not in other physiological processes. Taken together, these results underscore a distinct role of DhPpz1p in D. hansenii and illustrate an example of how organisms utilize the same molecular tool box differently to garner adaptive fitness for their respective ecological niches.


Assuntos
Debaryomyces/enzimologia , Debaryomyces/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Motivos de Aminoácidos , Cátions , Técnicas de Silenciamento de Genes , Pressão Osmótica , Homologia de Sequência de Aminoácidos
9.
Appl Environ Microbiol ; 73(8): 2561-70, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17308183

RESUMO

DNA microarrays of 86 genes from the yeasts Debaryomyces hansenii, Kluyveromyces marxianus, and Yarrowia lipolytica were developed to determine which genes were expressed in a medium mimicking a cheese-ripening environment. These genes were selected for potential involvement in lactose/lactate catabolism and the biosynthesis of sulfur-flavored compounds. Hybridization conditions to follow specifically the expression of homologous genes belonging to different species were set up. The microarray was first validated on pure cultures of each yeast; no interspecies cross-hybridization was observed. Expression patterns of targeted genes were studied in pure cultures of each yeast, as well as in coculture, and compared to biochemical data. As expected, a high expression of the LAC genes of K. marxianus was observed. This is a yeast that efficiently degrades lactose. Several lactate dehydrogenase-encoding genes were also expressed essentially in D. hansenii and K. marxianus, which are two efficient deacidifying yeasts in cheese ripening. A set of genes possibly involved in l-methionine catabolism was also used on the array. Y. lipolytica, which efficiently assimilates l-methionine, also exhibited a high expression of the Saccharomyces cerevisiae orthologs BAT2 and ARO8, which are involved in the l-methionine degradation pathway. Our data provide the first evidence that the use of a multispecies microarray could be a powerful tool to investigate targeted metabolism and possible metabolic interactions between species within microbial cocultures.


Assuntos
Regulação Fúngica da Expressão Gênica , Ácido Láctico/metabolismo , Lactose/metabolismo , Metionina/metabolismo , Leveduras/metabolismo , Queijo/microbiologia , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Perfilação da Expressão Gênica , Kluyveromyces/genética , Kluyveromyces/metabolismo , L-Lactato Desidrogenase/genética , Óperon Lac , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transaminases/genética , Yarrowia/genética , Yarrowia/metabolismo , Leveduras/genética
10.
Eukaryot Cell ; 5(8): 1388-98, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16896222

RESUMO

The yeast Debaryomyces hansenii has a remarkable capacity to proliferate in salty and alkaline environments such as seawater. A screen for D. hansenii genes able to confer increased tolerance to high pH when overexpressed in Saccharomyces cerevisiae yielded a single gene, named here DhGZF3, encoding a putative negative GATA transcription factor related to S. cerevisiae Dal80 and Gzf3. Overexpression of this gene in wild-type S. cerevisiae increased caffeine and rapamycin tolerance, blocked growth in low glucose concentrations and nonfermentable carbon sources, and resulted in lithium- and sodium-sensitive cells. Sensitivity to salt could be attributed to a reduced cation efflux, most likely because of a decrease in expression of the ENA1 Na(+)-ATPase gene. Overexpression of DhGZF3 did not affect cell growth in a gat1 mutant but was lethal in the absence of Gln3. These are positive factors that oppose both Gzf3 and Dal80. Genome-wide transcriptional profiling of wild-type cells overexpressing DhGZF3 shows decreased expression of a number of genes that are usually induced in poor nitrogen sources. In addition, the entire pathway leading to Lys biosynthesis was repressed, probably as a result of a decrease in the expression of the specific Lys14 transcription factor. In conclusion, our results demonstrate that DhGzf3 can play a role as a negative GATA transcription factor when expressed in S. cerevisiae and that it most probably represents the only member of this family in D. hansenii. These findings also point to the GATA transcription factors as relevant elements for alkaline-pH tolerance.


Assuntos
Fatores de Transcrição GATA/fisiologia , Regulação Fúngica da Expressão Gênica , Homeostase , Nitrogênio/metabolismo , Saccharomycetales/fisiologia , Adenosina Trifosfatases/metabolismo , Álcalis/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Concentração de Íons de Hidrogênio , Íons , Mutação , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , ATPase Trocadora de Sódio-Potássio , Fatores de Transcrição/metabolismo , Ativação Transcricional , Regulação para Cima
11.
Biochem Biophys Res Commun ; 346(2): 562-6, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16765917

RESUMO

In eukaryotes, mitogen-activated protein kinase (MAPK) pathways are very important signal transduction modules that regulate various cellular processes. Although eukaryotic cells possess a number of MAP kinase pathways, normally the MAPKKs selectively activate their cognate MAPK. Recent studies suggest that the MAPK-docking site in MAPKK facilitates this specific recognition and activation. However, the role of the docking site under in vivo conditions has not been demonstrated. In yeast external high osmolarity activates HOG (high osmolarity glycerol) MAPK pathway that consists of MAPKKK (Ste11p or Ssk2p/Ssk22p), MAPKK (Pbs2p), and MAPK (Hog1p). Previously, we have isolated a Pbs2p homologue (Dpbs2p) from osmo-tolerant and salt-tolerant yeast Debaryomyces hansenii that complemented pbs2 mutation in Saccharomyces cerevisiae. Here we show, for the first time, the presence of a MAPK-docking domain in Dpbs2p that is essential for its function in vivo. Mutation in this motif completely abolished its binding to Hog1p in vitro.


Assuntos
Proteínas Fúngicas/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Sítios de Ligação , Proteínas Fúngicas/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética
12.
Gene ; 369: 27-34, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16303259

RESUMO

Debaryomyces hansenii is a yeast species often found in salty environments. Its genome sequence is known completely, but the mechanisms behind its halotolerance are poorly understood. In the D. hansenii genome, there is a gene strongly homologous to the Saccharomyces cerevisiae NHA1 gene (encoding a plasma membrane Na+/H+ antiporter). We isolated this DhNHA1 gene from two D. hansenii strains (CBS 767 and CBS 1793) differing in their osmotolerance. Both DhNHA1 alleles were heterologously expressed in a S. cerevisiae strain lacking its own systems for the efflux of alkali metal cations (BW31a, ena1-4delta nha1delta). D. hansenii Na+/H+ antiporters were localized in the plasma membrane of BW31a cells, their presence increased BW31a tolerance to sodium, potassium, lithium and also rubidium. Measurements of Na+ and K+ efflux from S. cerevisiae cells expressing DhNHA1 alleles show that the D. hansenii antiporters efficiently transported both cations out of cells. The sodium and potassium transport activity of Nha1 antiporters from both D. hansenii strains was almost identical, indicating that plasma membrane antiporter activity is not one of the factors determining the different levels of halotolerance in the two strains.


Assuntos
Ascomicetos/genética , Proteínas de Transporte de Cátions/genética , Genes Fúngicos , Proteínas de Membrana/genética , Metais/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Trocadores de Sódio-Hidrogênio/genética , Adaptação Fisiológica , Sequência de Aminoácidos , Ascomicetos/fisiologia , Sequência de Bases , Cátions/metabolismo , DNA Fúngico , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Plasmídeos , Cloreto de Sódio , Especificidade por Substrato
13.
Biochem Biophys Res Commun ; 328(4): 906-13, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15707964

RESUMO

Mitogen-activated protein kinase (MAPK) cascade is a ubiquitous signaling module that transmits extracellular stimuli through the cytoplasm to the nucleus. In baker's yeast external high osmolarity activates high osmolarity glycerol (HOG) MAPK pathway which consists of two upstream branches (SHO1 and SLN1) and common downstream elements Pbs2p MAPKK and Hog1p MAPK. Activation of this pathway causes rapid nuclear accumulation of Hog1p, essentially leading to the expression of target genes. Previously we have isolated a PBS2 homologue (DPBS2) from osmo-tolerant and salt-tolerant yeast Debaryomyces hansenii that partially complemented pbs2 mutation in Saccharomyces cerevisiae. Here we show that by replacing C-terminal region of Dpbs2p with the homologous region of Pbs2p we could abrogate partial complementation exhibited by Dpbs2p and this was achieved due to increase in nuclear translocation of Hog1p. Thus, our result showed that in HOG pathway, MAPKK has important role in nuclear translocation of Hog1p.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomycetales/enzimologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Pressão Osmótica/efeitos dos fármacos , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Transdução de Sinais/fisiologia , Cloreto de Sódio/farmacologia , Relação Estrutura-Atividade , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA